Nonkinetic modeling of the mechanical unfolding of multimodular proteins: theory and experiments.

نویسندگان

  • F Benedetti
  • C Micheletti
  • G Bussi
  • S K Sekatskii
  • G Dietler
چکیده

We introduce and discuss a novel approach called back-calculation for analyzing force spectroscopy experiments on multimodular proteins. The relationship between the histograms of the unfolding forces for different peaks, corresponding to a different number of not-yet-unfolded protein modules, is exploited in such a manner that the sole distribution of the forces for one unfolding peak can be used to predict the unfolding forces for other peaks. The scheme is based on a bootstrap prediction method and does not rely on any specific kinetic model for multimodular unfolding. It is tested and validated in both theoretical/computational contexts (based on stochastic simulations) and atomic force microscopy experiments on (GB1)(8) multimodular protein constructs. The prediction accuracy is so high that the predicted average unfolding forces corresponding to each peak for the GB1 construct are within only 5 pN of the averaged directly-measured values. Experimental data are also used to illustrate how the limitations of standard kinetic models can be aptly circumvented by the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Order statistics theory of unfolding of multimeric proteins.

Dynamic force spectroscopy has become indispensable for the exploration of the mechanical properties of proteins. In force-ramp experiments, performed by utilizing a time-dependent pulling force, the peak forces for unfolding transitions in a multimeric protein (D)(N) are used to map the free energy landscape for unfolding for a protein domain D. We show that theoretical modeling of unfolding t...

متن کامل

Modified Couple Stress Theory for Vibration of Embedded Bioliquid-Filled Microtubules under Walking a Motor Protein Including Surface Effects

Microtubules (MTs) are fibrous and tube-like cell substructures exist in cytoplasm of cells which play a vital role in many cellular processes. Surface effects on the vibration of bioliquid MTs surrounded by cytoplasm is investigated in this study. The emphasis is placed on the effect of the motor protein motion on the MTs. The MT is modeled as an orthotropic beam and the surrounded cytoplasm i...

متن کامل

The nanomechanics of polycystin-1 extracellular region.

Recent evidence suggests that polycystin-1 (PC1) acts as a mechanosensor, receiving signals from the primary cilia, neighboring cells, and extracellular matrix and transduces them into cellular responses that regulate proliferation, adhesion, and differentiation that are essential for the control of renal tubules and kidney morphogenesis. PC1 has an unusually long extracellular region ( approxi...

متن کامل

Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments?

By considering temperature effects on the mechanical unfolding rates of proteins and RNA, whose energy landscape is rugged, the question posed in the title is answered in the affirmative. Adopting a theory by Zwanzig [Zwanzig, R. (1988) Proc. Natl. Acad. Sci. USA 85, 2029-2030], we show that, because of roughness characterized by an energy scale epsilon, the unfolding rate at constant force is ...

متن کامل

Unfolding X-ray spectrum in the diagnostic range using the Monte Carlo Code MCNP5

Introduction: Unfolding X-ray spectrum is a powerful tool for quality control of X-ray tubes. Generally, the acquisition of the X-ray spectrum in diagnostic radiology departments is complicated and difficult due to high photon flux. Measurement of x ray spectra using radiation detectors could not be performed accurately, because of the pulse pile up. Therefore, indirect methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 101 6  شماره 

صفحات  -

تاریخ انتشار 2011